If X^-2 =64 then what will be the value of 1/x^3 + x^0?

2 Answers
Jan 27, 2018

#513, or -511#.

Explanation:

#x^-2=64 rArr 1/x^2=64 rArr x^2=1/64 rArr x=+-1/8#.

#rArr 1/x=+-8#.

#:. 1/x^3+x^0=(1/x)^3+1=(+-8)^3+1=+-512+1#.

#:." The Reqd. Value="513, or -511#.

Jan 27, 2018

Please see another method in resolving below;

Explanation:

Given;

#x^-2 = 64#

Using Indices

Recall: #x^-1 = 1/x#

#x^-2 = 64#

#1/x^2 = 64#

#1/x^2 = 64/1#

Cross multiplying..

#64 xx x^2 = 1 xx 1#

#64 cdot x^2 = 1#

Divide both sides by #64#

#(64 cdot x^2)/64 = 1/64#

#(cancel64 cdot x^2)/cancel64 = 1/64#

#x^2 = 1/64#

Squareroot both sides..

#sqrtx^2 = sqrt(1/64)#

#x = 1/8#

Hence;

#1/x^3 + x^0#

#1/(1/8)^3 + (1/8)^0#

Recall: #x^0 = 1#

#1/(1/8)^3 + 1#

#1/(1/512) + 1#

#1 div 1/512 + 1#

#1 xx 512/1 + 1 color(white)(xxxxx)color(green)(512/1) -> "Transposed"#

#1 xx 512 + 1#

#512 + 1#

#513 -> "Answer"#

Hope this helps and its well understood!