#lim_(x->pi/2)(sinx)^(1/sin(2x)) = #?

2 Answers
Jan 27, 2018

undefined

Explanation:

Solve by direct substitution

#lim_(x->pi/2)(sin x)^(1/(sin 2x)) = (sin (pi/2))^(1/(sin (pi))#

#= 0^(1/0) = oo or "undefined"#

Apply L'Hopital's rule but to do this we have to modify the function

#y(x) = (sin x)^(1/(sin 2x))#

Take natural logarithm of both sides

#ln(y) = ln(sin x)^(1/(sin 2x)) = 1/(sin(x))ln(sin(2x))#

#ln(y) = ln(sin(x))/(sin(x))#

#lim_(x->pi/2)(sin x)^(1/(sin 2x)) = ln(sin(x))/(sin(2x))#

# = "undefined" #

Now we can apply L'Hopital's rule

Numerator

#d/dx sin(x) = cos(x)#

Denominator

#d/dx(sin(2x)) = d/(du)(sin(u))d/dx(2x)#

#= cos(u)*2#

#= cos(2x)*2#

Divide numerator by denominator

#cos(x)/(cos(2x)*2) = cos((pi)/2)/(cos(pi)*2) = 0/0#

So again we derivate numerator and denominator

Numerator

#d/dx cos(x) = -sin(x) = -1#

Denominator

#d/dx(cos(2x)*2) = 2d/(du)cos(u)d/dx(2x)#

# = -4sin(2x)#

#=0#

I used a calculator to find where the function becomes defined but you no matter how much you derivate the answer remain undefined

Numerator

#d/dx(-sin(x)) rarr -cos(x) rarr d/dx(-cos(x)) rarr sin(x) rarr sin(pi/2) = 1#

Denominator

#d/dx(-4sin(2x)) rarr -8\cos (2x\ ) rarr d/dx (-8\cos (2x\ )) rarr 16\sin \(2x\) rarr 16\sin \(pi\) = 0 #

Jan 27, 2018

#lim_(x->pi/2)(sinx)^(1/sin(2x)) = 1#

Explanation:

Near #x = pi/2# we have

#sinx = 1-1/2(x-pi/2)^2+1/24(x-pi/2)^2+O((x-pi/2)^5)#

and

#sin(2x) = -2(x-pi/2)+4/3(x-pi/2)^3+O((x-pi/2)^5)#

Then making #x-pi/2 = y#

#lim_(x->pi/2)(sinx)^(1/sin(2x)) equiv lim_(y->0)(1-1/2y^2+O(y^4))^(1/(-2y+O(y^3)))#

#= lim_(y->0)1^(-1/(2y)) = 1#

#lim_(x->pi/2)(sinx)^(1/sin(2x)) = 1#