Points A and B are at #(9 ,4 )# and #(1 ,2 )#, respectively. Point A is rotated counterclockwise about the origin by #(3pi)/2 # and dilated about point C by a factor of #3 #. If point A is now at point B, what are the coordinates of point C?

1 Answer
Jan 28, 2018

#C=(-13/2,25/2)#

Explanation:

#"under a counterclockwise rotation about the origin of "(3pi)/2#

#• " a point "(x,y)to(-y,x)#

#rArrA(9,4)toA'(-4,9)" where A' is the image of A"#

#rArrvec(CB)=color(red)(3)vec(CA')#

#rArrulb-ulc=3(ula'-ulc)#

#rArrulb-ulc=3ula'-3ulc#

#rArr2ulc=3ula'-ulb#

#color(white)(rArrulc)=3((-4),(9))-((1),(2))#

#color(white)(rArrulc)=((-12),(27))-((1),(2))=((-13),(25))#

#rArrulc=1/2((-13),(25))=((-13/2),(25/2))#

#rArrC=(-13/2,25/2)#