How do you multiply #\sqrt { 9x ^ { 4} } \cdot 2x ^ { - 3}#?

1 Answer
Jan 29, 2018

See a solution process below:

Explanation:

First, we can rewrite the expression on the left as;

#sqrt(9)sqrt(x^4) * 2x^-3 =>#

#3x^2 * 2x^-3#

Next, rewrite the expression as:

#(3 * 2)(x^2 * x^-3) =>#

#6(x^2 * x^-3)#

Next, we can use this rule of exponents to multiply the #x# terms:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#6(x^color(red)(2) xx x^color(blue)(-3)) => 6x^(color(red)(2) + color(blue)(-3)) => 6x^-1#

If necessary, to eliminate the negative exponent we can use these rules for exponents:

#x^color(red)(a) = 1/x^color(red)(-a)# and #a^color(red)(1) = a#

#6x^color(red)(-1) => 6 * 1/x^color(red)(- -1) => 6 * 1/x^color(red)(1) => 6 * 1/x => 6/x#