First, rewrite the term within the parenthesis as:
#((3/3^2)(x^2/x^-1)(y^-5/y)(z/z^3))^2#
Next, use this rule of exponents to rewrite the expression again:
#a = a^color(red)(1)#
#((3^color(red)(1)/3^2)(x^2/x^-1)(y^-5/y^color(red)(1))(z^color(red)(1)/z^3))^2#
Then, use this rule of exponents to simplify the #3#, #y# and #z# terms:
#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#
#((3^color(red)(1)/3^color(blue)(2))(x^2/x^-1)(y^color(red)(-5)/y^color(blue)(1))(z^color(red)(1)/z^color(blue)(3)))^2 =>#
#((1/3^(color(blue)(2)-color(red)(1)))(x^2/x^-1)(1/y^(color(blue)(1)-color(red)(-5)))(1/z^(color(blue)(3)-color(red)(1))))^2 =>#
#((1/3^(1))(x^2/x^-1)(1/y^(color(blue)(1)+color(red)(5)))(1/z^2))^2 =>#
#((1/3^1)(x^2/x^-1)(1/y^6)(1/z^2))^2 =>#
#((1/(3^1y^6z^2))(x^2/x^-1))^2#
Next, use this rule of exponents to simplify the #x# term:
#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#
#((1/(3^1y^6z^2))(x^color(red)(2)/x^color(blue)(-1)))^2 =>#
#((1/(3^1y^6z^2))(x^(color(red)(2)-color(blue)(-1))))^2 =>#
#((1/(3^1y^6z^2))(x^(color(red)(2)+color(blue)(1))))^2 =>#
#((1/(3^1y^6z^2))(x^3))^2 =>#
#(x^3/(3^1y^6z^2))^2#
Now, use this rule of exponents to complete the simplification:
#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#
#(x^color(red)(3)/(3^color(red)(1)y^color(red)(6)z^color(red)(2)))^color(blue)(2)#
#x^(color(red)(3) xx color(blue)(2))/(3^(color(red)(1) xx color(blue)(2))y^(color(red)(6) xx color(blue)(2))z^(color(red)(2) xx color(blue)(2))) =>#
#x^6/(3^2y^12z^4) =>#
#x^6/(9y^12z^4)#