How do you integral #int [secx(x)tan(x)]/(sec(x)-1)dx#?
1 Answer
Jan 30, 2018
# int \ (secx \ tanx )/ (secx - 1) \ dx = ln|secx+1| + C#
Explanation:
We seek:
# I =int \ (secx \ tanx )/ (secx - 1) \ dx #
If we perform the substitution:
# u =secx-1 => (du)/dx = secx \ tanx #
Applying this substitution to the integral we get:
# I =int \ 1/u \ du #
Which is a trivial standard integral, so if we integrate we get:
# I = ln|u| + C#
And restoration of the earlier substitution gives:
# I = ln|secx+1| + C#