Question #010fc

1 Answer
Jan 31, 2018

#x=2\quad,\quady=0#

Explanation:

#color(red)(-14)=color(green)(-20y)\quadcolor(blue)(-7x)#

#color(green)(10y)+color(red)(4)=color(blue)(2x)#

Manipulate the equations so the like terms (same colored) are in the same place:

#color(green)(-20y)\quadcolor(blue)(-7x)=color(red)(-14)#

#color(green)(10y)\quadcolor(blue)(-2x)=color(red)(-4)#

To eliminate a variable, they have to be opposites. We can eliminate #color(green)(y)# here by multiplying the bottom equation by #2#. The top equations stays as it is.

#2(color(green)(10y)\quadcolor(blue)(-2x))=color(red)((-4))2#

Simplifying:

#color(green)(20y)\quadcolor(blue)(-4x)=color(red)(-8)#

Now the equations can be added together:

#\qquadcolor(green)(cancel(-20y))\quadcolor(blue)(-7x)=color(red)(-14)#

#+\qquadcolor(green)(cancel(20y))\quadcolor(blue)(-4x)=color(red)(-8)#
——————————
#color(blue)(-11x)=color(red)(-22#

Solving for #color(blue)(x#:

#color(blue)(x)=2#

Now that we know the value of #color(blue)(x)#, we can plug it into one of the equations to solve for #color(green)(y)#.

#color(red)(-14)=color(green)(-20y)\quadcolor(blue)(-7x)#

#color(red)(-14)=color(green)(-20y)\quadcolor(blue)(-14#

Isolating for #color(green)(y)#:

#0=color(green)(-20y)#

#color(green)(y)=0#

To confirm our answers plug the values of #color(blue)(x=2)# and #color(green)(y=0)# into an equation:

#color(green)(10y)+color(red)(4)=color(blue)(2)#

#color(green)(0)+color(red)(4)=color(blue)(4)#

#4=4#

So the answers are correct.