Find # int 1/(x^2+2x+10)^2 dx #?
2 Answers
Explanation:
Let,
We use the subst.,
Replacing
Enjoy Maths., and, Spread The Joy!
# int \ 1/(x^2+2x+10)^2 \ dx = 1/54 arctan((x+1)/3)+(x+1)/(18(9+(x+1)^2)) + C#
Explanation:
We seek:
# I = int \ 1/(x^2+2x+10)^2 \ dx #
We complete the square on the quadratic in the denominator:
# I = int \ 1/((x+1)^2-1+10)^2 \ dx #
# \ \ = int \ 1/((x+1)^2+9)^2 \ dx #
Now we can attempt a substitution of the form:
# x+1 = 3tan theta => tan theta = (x+1)/3 #
And,#dx/(d theta) = 3sec^2 theta #
If we substitute into the integral, it becomes:
# I = int \ 1/(9tan^2 theta+9)^2 \ 3sec^2 theta \ d theta #
# \ \ = int \ 1/((9(tan^2 theta + 1))^2) \ 3sec^2 theta \ d theta #
# \ \ = 1/27 \ int \ 1/((sec^2 theta)^2) \ sec^2 theta \ d theta #
# \ \ = 1/27 \ int \ 1/sec^2 theta \ d theta #
# \ \ = 1/27 \ int \ cos^2 theta \ d theta #
And if we apply the cosine double angle formula:
# cos 2A -= 2cos^2A-1 #
We get:
# I = 1/27 \ int \ (1+cos 2theta)/2 \ d theta #
# \ \ = 1/54 \ int \ 1+cos 2theta \ d theta #
# \ \ = 1/54 \ {theta+1/2sin2theta } + C#
We now manipulate the result in preparation of the restoration of the earlier substitution:
# I = 1/54 \ {theta+1/2(2sin theta cos theta) } + C#
# \ \ = 1/54 \ {theta+sin theta cos theta * (cos theta)/(cos theta) } + C#
# \ \ = 1/54 \ {theta+(tan theta)/(sec^2 theta) } + C#
# \ \ = 1/54 \ {theta+(tan theta)/(1+tan^2 theta) } + C#
And now, we can restore the earlier substitution:
# I = 1/54 \ {arctan((x+1)/3)+((x+1)/3)/(1+((x+1)/3)^2) } + C#
# \ \ = 1/54 \ {arctan((x+1)/3)+((x+1)/3)/(1+(x+1)^2/9) } + C#
# \ \ = 1/54 \ {arctan((x+1)/3)+((x+1)/3)/((9+(x+1)^2)/9) } + C#
# \ \ = 1/54 \ {arctan((x+1)/3)+(3(x+1))/(9+(x+1)^2) } + C#
# \ \ = 1/54 arctan((x+1)/3)+(x+1)/(18(9+(x+1)^2)) + C#