How many grams of ice at -13.1 ∘C can be completely converted to liquid at 26.5 ∘C if the available heat for this process is 5.52×103 kJ ?

For ice, use a specific heat of 2.01 J/(g⋅∘C) and ΔHfus=6.01kJ/mol.

1 Answer

The available heat can convert 11.7 kg of ice.

Explanation:

First, determine the heat needed to warm the ice to #0^oC#, then how much heat you need to melt the ice, and then how much heat you need to warm the water.

Solve each in terms of #m#. Add them together and set the sum equal to the total energy, then solve for #m#.

The total energy is the energy needed to
warm the ice to #0^oC# + melt ice + warm the water.

#q_1 +q_2+q_3= 5.52xx10^3kJ# or #5.52xx10^6J#

For ice, #ΔT= 13.1^oC#; #C = 2.01 J/g^oC#
#q_1 = mC ΔT#
#q_1= m(2.01 J/g^oC)(13.1^oC#)
#q_1= m(26.33 J/g)#

#q_2=mΔH_f#

Convert #ΔH_f# to #J/g#
#((6.01(kJ)/(mol))(1000J/(kJ)))/((18.01g)/(mol))#
#ΔH_f= 334J/g#

#q_2=m(334 J/g)#

Since you start at zero, ΔT is #26.5^o#C for heating water

#q_3= mCΔT#
#q_3= m(4.18 J/g^oC)(26.5^oC)#
#q_3=m(110.77J/g)#

#q_1 + q_2 + q_3= 5.52xx10^3 kJ# or #5.52xx10^6J#

# m(26.33 J/g) + m(334 J/g) + m(110.77J/g) = 5.52 xx 10^6 J#

#m(471 J/g)= 5.52 xx 10^6 J#
#m= (5.52 xx 10^6 J)/(471 J/g)#
#m= 11 700 g#
#m=11.7 kg#