What is the equation of the tangent line of #f(x)=e^(-x^2)-x^2e^x# at #x=4#?

1 Answer
Feb 2, 2018

#y = -1310.355x + 4367.85# (figures to 3 d.p.)

Explanation:

#f(x) = e^(-x^2) - x^2e^x#

derive #e^(-x^2)# and #-x^2e^x# separately.

#f'(x) = (Deltay)/(Deltax) (e^(-x^2)) - (Deltay)/(Deltax)(x^2e^x)#

using the chain rule:

#(Deltay)/(Deltax) ( e^(-x^2)) = e^(-x^2) * (Deltay)/(Deltax) ( -x^2)#

#= e^(-x^2) * - (Deltay)/(Deltax)(x^2)#

#-2xe^(-x^2)#

using the product rule:

#(Deltay)/(Deltax) (-x^2e^x) = ((Deltay)/(Deltax)(-x^2) * e^x) + ((Deltay)/(Deltax)(e^x) + -x^2)#

#(Deltay)/(Deltax)(-x^2) = -2x#

#(Deltay)/(Deltax)(e^x) = e^x#

#((Deltay)/(Deltax)(-x^2) * e^x) + ((Deltay)/(Deltax)(e^x) + -x^2) = -2xe^x + -x^2e^x#

#(-2xe^(-x^2)) + (-2xe^x + -x^2e^x) = -2xe^(-x^2) - 2xe^x - x^2e^x#

#f'(x) = -2xe^(-x^2) - 2xe^x - x^2e^x#

to find the gradient of the tangent line, substitute #x# for #4:#

#-2xe^(-x^2) - 2xe^x - x^2e^x = -8e^(-16) - 8e^4 - 16e^4#

#-8e^(-16) - 8e^4 - 16e^4 = -8e^(-16) - 24e^4#

#= -1310.355# (3d.p.)

the tangent is a straight line, with equation #y = mx+c#.

at #x = 4, y = e^(-4^2) - 16e^4 = e^(-16) - 16e^4 = -873.570# (3d.p.)

at the tangent, #-1310.355x + c = -873.570#

#c = -873.570 - (-1310.355 * 4) = -873.570 - -5241.42#

#= 4367.85#

therefore the equation of the tangent is #y = -1310.355x + 4367.85# (figures to 3 d.p.)