Question #2c9a8

3 Answers
Feb 4, 2018

#13/85#

Explanation:

If #sin(A)=3/5#,which is positive, and #A# is obtuse, we know #A# is in #Q#II.

The ratio #3/5# uses the Pythagorean triple #3, 4, 5#. We know that #cos(A) = -4/5#.

Since #B# is acute we know #B# is in #Q#I. The ratio #15/17# comes from the Pythagorean triple #8, 15, 17#, so we know that #sin(B) = 8/17#.

The sum formula for sine is:

#sin(A+B) = sin(A)cos(B)+cos(A)sin(B)#

#sin(A+B) = sin(A)cos(B)+cos(A)sin(B)#

#=(3/5)(15/17) + (-4/5)(8/17)#

#=13/85#

Feb 4, 2018

#sin(A+B)=13/85#

Explanation:

#sinA=3/5 , CosB=15/17#

Acute angles are smaller than #90^0#. Obtuse angles are larger

than 90°, but less than #180^0#. Since #/_A# is obtuse angle,

it is on second quadrant. Base #B^2= H^2-P^2# or

#B^2=5^2-3^2=5^2-3^2=4^2or B=4; H=5 , P=3#

# sin A=P/H=3/5 :. cos A =B/H= -4/5#

Since #/_B# is acute angle,it is on first quadrant.

Perpendicular #P^2= H^2-B^2# or

#P^2=17^2-15^2=64or P=8; H=17 , B=15#

#cos B =B/H= 15/17 :.sin B=P/H=8/17 #

#sin(A+B)=sinA cosB+cosA sinB# or

#sin(A+B)=3/5*15/17+(-4/5)* 8/17# or

#sin(A+B)=9/17-32/85= (45-32)/85=13/85# [Ans]

Feb 4, 2018

#13/85#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)sin^2x+cos^2x=1#

#rArrsinx=+-sqrt(1-cos^2x)#

#rArrcosx=+-sqrt(1-sin^2x)#

#•color(white)(x)sin(A+B)=sinAcosB+cosAsinB#

#"to obtain the expansion we require the values of"#

#cosA" and "sinB#

#"since A is obtuse then "cosA<0#

#rArrcosA=-sqrt(1-(3/5)^2)=-sqrt(16/25)=-4/5#

#"since B is acute then "sinB>0#

#rArrsinB=sqrt(1-(15/17)^2)=sqrt(64/289)=8/17#

#rArrsin(A+B)#

#=(3/5xx15/17)+(-4/5xx8/17)#

#=45/85-32/85#

#=13/85#