How do you solve #cos x = 3# ?

3 Answers
Feb 5, 2018

#"no solution"#

Explanation:

#"note that "-1<=cosx <=1#

#rArrcosx=3" is not valid"#

Feb 5, 2018

#x# has no value.

Explanation:

The cosine function only gives out answers from #-1# to #1#. As this value exceeds these bounds, #x# has no value.

Feb 5, 2018

#x = 2npi+-iln(3+2sqrt(2))" "# for any #n in ZZ#

Explanation:

#cos x# can be considered as a real valued function of real numbers or a complex valued function of complex numbers.

As a real valued function #-1 <= cos x <= 1# for all real values of #x#, so there is no real value of #x# such that #cos x = 3#

To define #cos x# for complex values of #x#, use Euler's formula:

#e^(ix) = cos x + i sin x#

and some basic trigonometric properties:

#cos(-x) = cos(x)#

#sin(-x) = - sin(x)#

Then we find:

#(e^(ix)+e^(-ix))/2 = 1/2((cos(x) + i sin(x))+(cos(-x)+i sin(-x)))#

#color(white)((e^(ix)+e^(-ix))/2) = 1/2((cos(x) + i sin(x))+(cos(x)-i sin(x)))#

#color(white)((e^(ix)+e^(-ix))/2) = cos(x)#

Then we can use the definition:

#cos(x) = 1/2(e^(ix)+e^(-ix))#

to extend the definition of #cos(x)# to complex numbers.

Then to solve #cos(x) = 3#, proceed as follows:

#3 = cos(x) = 1/2(e^(ix)+e^(-ix))#

Multiply both ends by #e^(ix)# and rearranging a little:

#0 = (e^(ix))^2-6(e^(ix))+1#

#color(white)(0) = (e^(ix))^2-6(e^(ix))+9-8#

#color(white)(0) = (e^(ix)-3)^2-(2sqrt(2))^2#

#color(white)(0) = ((e^(ix)-3)-2sqrt(2))((e^(ix)-3)+2sqrt(2))#

#color(white)(0) = (e^(ix)-3-2sqrt(2))(e^(ix)-3+2sqrt(2))#

So:

#e^(ix) = 3+-2sqrt(2)#

So:

#ix = ln(3+-2sqrt(2))+2npii" "# for any #n in ZZ#

Noting that #3-2sqrt(2) = 1/(3+2sqrt(2))#, this becomes:

#x = 2npi+-iln(3+2sqrt(2))" "# for any #n in ZZ#