Question #2641d

2 Answers
Feb 6, 2018

#1/x#

Explanation:

Remember that #a^b=e^(b*lna)#.

Here, #a=x#, and #b=-1#.

The above equation becomes #e^(-1*lnx)#.

Using the above property of powers, this simplifies to:

#x^-1#

#=1/x#

Feb 6, 2018

The answer is #=1/x#

Explanation:

Let #y=e^(-lnx)#

Taking the logarithms on both sides,

#lny=ln(e^(-lnx))#

#=-lnx#

#=ln1-lnx#

#=ln(1/x)#

As,

#lny=ln(1/x)#

#y=1/x#