How do you write #(4sqrt(3)-4i)^22# in the form of a+bi?

2 Answers
Feb 6, 2018

#(4sqrt(3)-4i)^22 = 2^65+2^65sqrt(3) i#

#color(white)((4sqrt(3)-4i)^22) = 36893488147419103232+36893488147419103232sqrt(3)i#

Explanation:

Given:

#(4sqrt(3)-4i)^22#

Note that:

#abs(4sqrt(3)-4i) = sqrt((4sqrt(3))^2+4^2) = sqrt(48+16) = sqrt(64) = 8#

So #4sqrt(3)-4i# can be expressed in the form #8(cos theta + i sin theta)# for some suitable #theta#.

#4sqrt(3)-4i = 8(sqrt(3)/2-1/2i) = 8(cos(-pi/6) + i sin(-pi/6))#

So:

#(4sqrt(3)-4i)^22 = (8(cos(-pi/6)+isin(-pi/6)))^22#

#color(white)((4sqrt(3)-4i)^22) = 8^22(cos(-(22pi)/6)+isin(-(22pi)/6))#

#color(white)((4sqrt(3)-4i)^22) = 8^22(cos(pi/3)+isin(pi/3))#

#color(white)((4sqrt(3)-4i)^22) = 8^22(1/2+sqrt(3)/2 i)#

#color(white)((4sqrt(3)-4i)^22) = 2^65+2^65sqrt(3) i#

#color(white)((4sqrt(3)-4i)^22) = 36893488147419103232+36893488147419103232sqrt(3)i#

Feb 6, 2018

Here's one way that doesn't use the Binomial Theorem.

Explanation:

Observe that #(4sqrt3 - 4i)^22 = (4(sqrt3 - i))^22 = 4^22(sqrt3-i)^22#.
This will let us keep the coefficients down somewhat.
We will find the expansion of #(sqrt3-i)^22# and will multiply by #4^22 = 2^44# at the end.

#(sqrt3-i)^2 = (sqrt3-i)(sqrt3-i) = 3 -1 -2isqrt3 = 2-2isqrt3#
#(sqrt3-i)^3 = (2-2isqrt3)(sqrt3-i) = 2sqrt3 - 2i -6i - 2sqrt3 = -8i#
#(sqrt3-i)^21 = ((sqrt3-i)^3)^7 = (-8i)^7 = 2^21i#
#= (-8^7)(i^7) = (-2^21)(-i) = 2^21i#
#(sqrt3-i)^22 = (2^21i)(sqrt3 - i) = 2^21(1 + isqrt3) #
Multiply by #4^22 = 2^44#:

The final answer is
#=2^65(1+ isqrt3)#