Factorise the following using completing square method?

#9x^2 -9(a+b)x +(2a^2+5ab+2b^2)#

2 Answers
Feb 8, 2018

#(3x-2a-b)(3x-a-2b)#

Explanation:

.

#9x^2-9(a+b)x+(2a^2+5ab+2b^2)#

This seems to be in the form of:

#(alpha-beta)^2=alpha^2-2alphabeta+beta^2#

Let's factor out #9#:

#9[x^2-(a+b)x+(2a^2+5ab+2b^2)/9]#

Now, it looks like it has the following burried in the expression:

#(alpha-beta)^2=(alpha^2-2alphabeta+beta^2)#

#alpha^2=x^2#, #-2alphabeta=-(a+b)x#, #beta^2=??#

Since #alpha=x#, then:

#-2alphabeta=-2xbeta#

#-2zbeta=-(a+b)x#

Let's divide both sides by #-2x#:

#beta=(a+b)/2#

Now, if we write the expression as:

#9[x^2-2x(a+b)/2+((a+b)/2)^2-((a+b)/2)^2+(2a^2+5ab+2b^2)/9]#

the expression is unchanged and we can write it as:

#9[(x-(a+b)/2)^2-(a^2+2ab+b^2)/4+(2a^2+5ab+2b^2)/9]=#

#9[(x-(a+b)/2)^2-(9a^2+18ab+9b^2-8a^2-20ab-8b^2)/36]=#

#9[(x-(a+b)/2)^2-(a^2-2ab+b^2)/36]=#

#9[(x-(a+b)/2)^2-((a-b)^2)/36]=#

#9[(x-(a+b)/2)^2-((a-b)/6)^2]=#

#9(x-(a+b)/2-(a-b)/6)(x-(a+b)/2+(a-b)/6)=#

#9(x-(3a+3b+a-b)/6)(x-(3a+3b-a+b)/6)=#

#9(x-(4a+2b)/6)(x-(2a+4b)/6)=#

#9(x-(2a+b)/3)(x-(a+2b)/3)=#

#(3x-2a-b)(3x-a-2b)#

Feb 8, 2018

#9x^2-9(a+b)x+(2a^2+5ab+2b^2) = (3x-2a-b)(3x-a-2b)#

Explanation:

Given:

#9x^2-9(a+b)x+(2a^2+5ab+2b^2)#

In the following we premultiply by #4=2^2# to avoid working with fractions, complete the square, then use the difference of squares identity:

#A^2-B^2 = (A-B)(A+B)#

with #A=(6x-(3a+3b))# and #B=(a-b)#.

We find:

#4(9x^2-9(a+b)x+(2a^2+5ab+2b^2))#

#=36x^2-36(a+b)x+(8a^2+20ab+8b^2)#

#=(6x)^2-2(6x)(3a+3b)+(9a^2+18ab+9b^2)-(a^2-2ab+b^2)#

#=(6x-(3a+3b))^2-(a-b)^2#

#=(6x-(3a+3b)-(a-b))(6x-(3a+3b)+(a-b))#

#=(6x-4a-2b)(6x-2a-4b)#

#=4(3x-2a-b)(3x-a-2b)#

So:

#9x^2-9(a+b)x+(2a^2+5ab+2b^2) = (3x-2a-b)(3x-a-2b)#