Could someone please help me prove this identity? 1/(secA-1) + 1/(secA+1) = 2cotAcosecA

1/(secA-1) + 1/(secA+1) = 2cotAcosecA

2 Answers
Feb 8, 2018

See the proof below

Explanation:

We need

1+tan^2A=sec^2A

secA=1/cosA

cotA=cosA/sinA

cscA=1/sinA

Therefore,

LHS=1/(secA+1)+1/(secA-1)

=(secA-1+secA+1)/((seca+1)(secA-1))

=(2secA)/(sec^2A-1)

=(2secA)/(tan^2A)

=2secA/(sin^2A/cos^2A)

=2/cosA*cos^2A/sin^2A

=2*cosA/sinA*1/sinA

=2cotAcscA

=RHS

QED

Feb 8, 2018

Please recall that

sec A = 1 / (cos A)

1/(1/cos A -1) + 1/(1/cos A+1

cos A/(1-cos A)+cos A/(1+cosA)

(cos A+cos^2A+cosA-cos^2A)/(1-cos^2A)

(2 cosA )/(1-cos^2A)

As sin^2A+cos^2= 1 , we can rewrite the denominator like the following

(2cosA)/sin^2A

(2cosA)/sinA 1/sin A

Please remember that cosA/sinA = cot A and 1/sinA = cosecA

Thus this leaves us with

2cotA cosecA

I hope this was helpful