What is the integration of #sec^2 x cos^2 (2x) dx#?

2 Answers
Feb 11, 2018

#I=sin(2x)-2x+tan(x)+C#

Explanation:

We want to solve

#I=intsec^2(x)cos^2(2x)dx#

Rewrite the integrand using #color(blue)(cos(2x)=2cos^2(x)-1)#

#I=intsec^2(x)(2cos^2(x)-1)^2dx#

#=intsec^2(x)(4cos^4(x)-4cos^2(x)+1)dx#

#=int4cos^2(x)-4+sec^2(x)dx#

Use the sum rule for integrals

#I=4intcos^2(x)dx-4intdx+intsec^2(x)dx#

Rewrite the integrand (1) using #color(blue)(cos(2x)=1/2(1+cos(2x)))#

#I=2int(1+cos(2x))dx-4intdx+intsec^2(x)dx#

#=2intcos(2x)dx-2intdx+intsec^2(x)dx#

Integrate (Notice #color(blue)((tan(x))'=sec^2(x))#)

#I=sin(2x)-2x+tan(x)+C#

Feb 11, 2018

#intsec^2xcos^2(2x)dx=-2x+sin2x+tanx#

Explanation:

Find:
#intsec^2xcos^2(2x)dx#

#sec^2x=1/cos^2x#

#cos^2(2x)=(cos2x)^2=(2cos^2x-1)^2#
Thus

#intsec^2xcos^2(2x)dx=int1/cos^2x(2cos^2x-1)^2dx#
#=int(2cos^2x-1)^2/cos^2xdx#
#=int(4cos^4x-4cos^2x+1)/cos^2xdx#
#=int(4cos^2x-4+sec^2x)dx#
#=int4cos^2xdx-int4dx+intsec^2xdx#
#int4cos^2xdx#
#cos^2x=1/2(1+cos2x)#
#4cos^2xdx=4(1/2(1+cos2x))=2+2cos2x#
#int4cos^2xdx=int(2+2cos2x)dx#
#=int2dx+int2cos2xdx#
Thus,
#int4cos^2xdx-int4dx+intsec^2xdx=#
#int2dx+int2cos2xdx-int4dx#
#+intsec^2xdx#
#=2x+sin2x-4x+tanx#
#=-2x+sin2x+tanx#

Now,

#intsec^2xcos^2(2x)dx=-2x+sin2x+tanx#