Given:
#f(x)=(sqrt(x+5))/(x^2-5x+5)#
Let #y=f(x)#
We differentiate using the quotient rule in calculus
#y=(sqrt(x+5))/(x^2-5x+5)#
Let #u=sqrt(x+5)#
#v=x^2-5x+5#
#(du)/dx=1/(2sqrt(x+5)#
#(dv)/dx=2x-5#
#v^2=(x^2-5x+5)^2#
At #x=-1,#
#u=sqrt(-1+5)=sqrt4=2#
#v=(-1)^2-5(-1)+5=1+5+5=11#
#(du)/dx=1/(2sqrt(-1+5))=1/(2sqrt(4))=1/((2)(2))=1/4#
#(dv)/dx=2(-1)-5=-2-5=-7#
#y=u/v#
#y=2/11#
#(dy)/dx=d/dx(u/v)#
#d/dx(u/v)=(v(du)/dx-u(dv)/dx)/v^2#
Substituting
#d/dx(y)=((11)(1/4)-(2)(-7))/(11^2)#
#=(11/4+14)/121#
#=(11+56)/4(1/121)#
#(dy)/dx=67/484#
Slope of the tangent is #y'=67/484#
Thus,
At #x=-1, y=2/11, y'=67/484#
Equation of a straight line passing through the point #(a,b)#, and havihg slope #m# is given by
Here, #a=-1,b=2/11,m=67/484#
#(y-b)/(x-a)=m#
Substituting for x, y, m
#(y-2/11)/(x-(-1))=67/484#
Simplifying
#(11y-2)/(11(x+1))=67/484#
#(11y-2)/(x+1)=67/44#
Cross multiplying
#44(11y-2)=67(x+1)#
#484y-88=67x+67#
Rearranging
#67x-484y+67+88=0#
Expressing in the standard form
#67x-484y+155=0#
Thus, the equation of the tangent is
#67x-484y+155=0#