How do you evaluate #\int \frac { 1} { x \ln x) d x #?

1 Answer
Feb 15, 2018

# int \ 1/(xlnx) \ dx = ln|lnx| + C #

Explanation:

We seek:

# I = int \ 1/(xlnx) \ dx #

We can perform a substitution:

Let #u=lnx => (du)/dx = 1/x #

If we substitute this into the integral, we get:

# I = int \ 1/u \ du #

Which is a standard integral, so we integrate to get:

# I = ln|u| + C #

And we can restore the substitution, to get:

# I = ln|lnx| + C #