Express #4x^2+32x+55# in the form #(ax+b)^2+c#, where a, b and c are constants and a is positive?

3 Answers
Feb 15, 2018

#4x^2+32x+55#, when expressed in the form
#(ax+b)^2+c#, we have
#4x^2+32x+55=(2x+8)^2-9#

Explanation:

#4x^2+32x+55#
Here,
Changing
#4x^2 to (2x)^2#
#32x to2(2x)(8)#
we have
#4x^2+32x+55=(2x)^2+2(2x)(8)+55#
We have,
#(2x)^2+2(2x)(8)+8^2=(2x+8)^2#

Since #8^2=64#

#(2x)^2+2(2x)(8)+64=(2x+8)^2#
and
changing now,
#55=64-9#+We have
#4x^2+32x+55=(2x)^2+2(2x)(8)+64-9#
#4x^2+32x+55=(2x+8)^2-9#

Feb 15, 2018

Is the question correct? The normal format for this question type is completing the square #->a(x+b)^2+c#
Answering for #a(x+b)^2+c#

#y=4(x+4)^2-9#

Explanation:

#color(blue)("Preamble")#

You can change any equation you wish into the format you wish as long as you add to it a correction that if applied with transform it back again.

A bit like

#2=2larr" Original structure"#

#3=2 larr" Changed and "color(red)("not true")#

#3-1=2 larr" Now we have 'forced' it to be true"#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Answering the question")#

Given #ubrace(y=4x^2+32x+55 larr)" Starting point""#
#color(white)("ddddddddddddd")darr#

#ubrace("You should go directly from that to this:")#
#color(white)("dddddddddddddd")darr#

#color(white)("ddddd")y=4(x+4)^2+k+55#

then determine the value of #k#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(brown)("This is how I got there taking it one step at a time.")#

I was challenged once on a point so I am doing it this way:

For each change we must include a correction. The value of this correction will be different as we proceed step-wise through the modifications on the path to the final format.

#color(blue)(Stepcolor(white)("d") 1 => k_1)#

#y=(4x^2+32x)+k_1+55# where in the end #k+55->c#
At this point #k_1=0# as we have not changed any values.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)(Step 2 => k_1)# No values changed yet

Factor out the 4

#y=4(x^2+32/4x)+k_1+55#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)(Stepcolor(white)("d") 3 => k_2)# Values starting to change: Halve the #32/4x#

#y=4(x^2+32/8x)+k_2+55#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)(Stepcolor(white)("d")4 => k_3)# Remove the #x# from #32/8x#

#y=4(x^2+32/8)+k_3+55#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)(Stepcolor(white)("d")5 => k_4)# Move the 2 from #x^2# to outside the brackets

#y=4(x+32/8)^2+k_4+55#

#y=4(x+4)^2+k_4+55 larr" Nearly there!"#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)(Stepcolor(white)("d")6 => k_4)# Determine the value of #k_4#

#y=color(green)(4)(x+color(magenta)(4))^2+k_4+55#

Set #(color(green)(4)xxcolor(magenta)(4^2) )+k_4=0 larr" The correction"#

#64+k_4=0=>k_4=-64# So substituting for #k_4# we have:

#y=4(x+4)^2+k_4+55 color(white)("ddd")->color(white)("dddd") y=4(x+4)^2-64+55#

#color(white)("dddddddddddddddddddddd")-> color(white)("dddd") y=4(x+4)^2-9#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Tony B

Feb 15, 2018

Assuming your question is correct.

'Forcing' the completed square solution in my other answer into this format we have:

#y=(sqrt(4)color(white)("d")x+4sqrt(4)color(white)(.))^2-9" "# which gives:

#y=(2x+8)^2-9#

Explanation:

Expanding : #y=(2x+8)^2-9#

#y=4x^2+32x+64-9#

#y=4x^2+32x+55#

Tony B