How do you divide #(x ^ { 3} - 4x ^ { 2} + 5x - k ) \div ( x - 3)#?

2 Answers
Feb 16, 2018

Quotient #=x^2-x+2# , remainder #6-k#

Explanation:

Rewrite #x^3−4x^2+5x−k# in the form

#x^3−4x^2+5x−k = x^3-3x^2-x^2+3x+2x-6+6-k#
# = x^2(x-3)-x(x-3)+2(x-3)+6-k#
#=(x-3)(x^2-x+2)+(6-k)#

Feb 16, 2018

#x^2-x+2+(6-k)/(x-3)#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(x^2)(x-3)color(magenta)(+3x^2)-4x^2+5x-k#

#=color(red)(x^2)(x-3)color(red)(-x)(x-3)color(magenta)(-3x)+5x-k#

#=color(red)(x^2)(x-3)color(red)(-x)(x-3)color(red)(+2)(x-3)color(magenta)(+6)-k#

#"quotient "=color(red)(x^2-x+2)," remainder "=6-k#

#rArr(x^3-4x^2+5x-k)/(x-3)#

#=x^2-x+2+(6-k)/(x-3)#