What is the equation of the tangent line of #f(x)=(x-1)^3+(x-2)(x-7) # at #x=7#?

1 Answer
Feb 17, 2018

#y=113x-545#

Explanation:

Step 1: Determine the y coordinate at the point #x=7#

#f(x)=(x-1)^3+(x-2)(x-7)#
#f(7)=(7-1)^3+(7-2)(7-7)rArr6^3+(5*0)rArr216#
Therefore the tangent to the curve passes through the point #color(orange)((7;216))#

Step 2: Expand and simplify the given Function

#f(x)=(x-1)^3+(x-2)(x-7)#
#rArrx^3-3x^2+3x-1+x^2-7x-2x+14#
#rArrx^3-2x^2-6x+13#

Step 3: Find the Derivative

#f'(x)=3x^2-2*(2x)-6#
#rArr3x^2-4x-6#

Step 4: Calculate the #color(brown)(Gradien)t# of the #color(green)("Tangent")#

substituting #x=7# into the equation #f'(x)# :
#f'(7)=(3*7^2)-(4*7)-6rArr113#

As we have the #color(brown)(Gradien)t# of the #color(green)("Tangent")# we can write that the equation of #color(green)("Tangent")# is

#y=113x+c#

where c is the #y#-intercept

Step 4: Determine the value of c

substituting #x=7# & #y=216# into the above equation:
#216=(113*7)+c#
#:.c=-545#

Step 5: Determine the equation of Tangent

Now, substituting the value of #c=-545#

#color(red)(y=113x-545)#
graph{(x^3-2x^2-6x+13-y)(113x-545-y)=0 [-10, 10, -5, 5]}