Help me please? with indefinite integral ln(cosx)dx/cos^2x

1 Answer
Feb 18, 2018

#I=ln(cos(x))tan(x)+tan(x)-x+C#

Explanation:

We want to solve

#I=intln(cos(x))/cos^2(x)dx=intln(cos(x))sec^2(x)dx#

Use integration by parts

#intudv=uv-intvdu#

Let #u=ln(cos(x))# and #dv=sec^2(x)dx#

Then #du=-tan(x)dx# and #v=tan(x)#

#I=ln(cos(x))tan(x)-inttan(x)(-tan(x))dx#

#=ln(cos(x))tan(x)+inttan^2(x)dx#

Then solve the integral

#I_1=inttan^2(x)dx#

Use the identity #tan^2(x)=sec^2(x)-1#

#I_1=intsec^2(x)dx-int1dx=tan(x)-x+C#

Therefore

#I=ln(cos(x))tan(x)+tan(x)-x+C#