If #a^2+2=3^(2/3)+3^(-2/3)# then show #3a^3+9a=8#? Thanks in Advance.
2 Answers
Actually
Explanation:
Note that:
#(3^(1/3)-3^(-1/3))^2 = (3^(1/3))^2-2(3^(1/3))(3^(-1/3)+(3^(-1/3))^2#
#color(white)((3^(1/3)-3^(-1/3))^2) = 3^(2/3)-2+3^(-2/3)#
So given:
#a^2+2 = 3^(2/3)+3^(-2/3)#
Subtract
#a^2 = 3^(2/3)-2+3^(-2/3) = (3^(1/3)-3^(-1/3))^2#
So:
#a = +-(3^(1/3)-3^(-1/3))#
If
#3a^3+9a = 3a(a^2+3)#
#color(white)(3a^3+9a) = 3(3^(1/3)-3^(-1/3))((3^(1/3)-3^(-1/3))^2+3)#
#color(white)(3a^3+9a) = 3(3^(1/3)-3^(-1/3))(3^(2/3)+1+3^(-2/3))#
#color(white)(3a^3+9a) = 3(3^(1/3)(3^(2/3)+1+3^(-2/3))-3^(-1/3)(3^(2/3)+1+3^(-2/3)))#
#color(white)(3a^3+9a) = 3((3+3^(1/3)+3^(-1/3))-(3^(1/3)+3^(-1/3)+1/3))#
#color(white)(3a^3+9a) = 3(3-1/3) = 9-1 = 8#
If we reverse the sign of
Explanation:
Here's another way of doing this that is slightly less painful:
Let
Then:
#a^2+2 = t^2+1/t^2#
Adding
#a^2+3 = t^2+1+1/t^2#
Instead, subtracting
#a^2 = t^2-2+1/t^2 = (t-1/t)^2#
So:
#a = +-(t-1/t)#
Then:
#3a^3+9a = 3a(a^2+3)#
#color(white)(3a^3+9a) = +-3(t-1/t)(t^2+1+1/t^2)#
#color(white)(3a^3+9a) = +-3(t(t^2+1+1/t^2)-1/t(t^2+1+1/t^2))#
#color(white)(3a^3+9a) = +-3((t^3+t+1/t)-(t+1/t+1/t^3))#
#color(white)(3a^3+9a) = +-3(t^3-1/t^3)#
#color(white)(3a^3+9a) = +-3(3-1/3)#
#color(white)(3a^3+9a) = +-(9-1)#
#color(white)(3a^3+9a) = +-8#