What is #int tan^-1 x dx #?
1 Answer
Feb 20, 2018
#I=tan^-1(x)x-1/2ln(x^2+1)+C#
Explanation:
We want to solve
#I=inttan^-1(x)dx#
Use integration by parts / partial integration
#intudv=uv-intvdu#
Let
Then
#I=tan^-1(x)x-intx/(x^2+1)dx#
Make a substitution
#I=tan^-1(x)x-1/2int1/(u)du#
#=tan^-1(x)x-1/2ln(u)+C#
Substitute back
#I=tan^-1(x)x-1/2ln(x^2+1)+C#