#4x^16y^16z^3-4x^16z^3-4y^16z^3+4z^3#
let # x^16 = a#
let #y^16 = b#
let #z^3 =c#
So given expression = #4abc - 4ac - 4bc + 4c#
#=> 4ac ( b - 1) -4 c ( b-1) # ----(group first two and last two terms and take the common factor outside the bracket)
#=> (4ac -4c) (b-1)#
#=> 4c(a-1)(b-1)#
Now substitute the original values of a,b, and c:
#=> 4 z^3 (x^16 -1) (y^16 -1)#
Use identity: #a^2-b^2 = (a-b)(a+b)#
#=> 4 z^3 [(x^8)^2 - 1^2)(y^8)^2 -1^2)] #
#=> 4 z^3 [(x^8 - 1)(x^8 +1)] [(y^8 -1)(y^8 +1)] #
#=> 4 z^3 [(x^8 +1)(y^8 +1)] [(x^8 - 1)(y^8 -1)] #
#=> 4z^3 (x^8+1)(y^8+1) [(x^4)^2 -(1)^2)((y^4)^2 -(1)^2)]#
#=> 4z^3 (x^8+1)(y^8+1) [(x^4+1)(x^4-1)(y^4+1)(y^4-1)]#
#=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^4-1)(y^4-1)]#
#=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^2)^2-1^2)(y^2)^2-1^2)]#
#=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^2+1)(x^2-1)(y^2+1)(y^2-1)]#
#=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)(x^2+1)(y^2+1)[(x^2-1)(y^2-1)]#
#=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)(x^2+1)(y^2+1)[(x-1)(x+1)(y-1)(y+1)]#
#=>4z^3(x^8+1)(x^4+1)(x^2+1)(x+1)(x-1)(y^8+1)(y^4+1)(y^2+1)(y+1)(y-1)#