From differentiating #xe^x#, how do you deduce #int_0^2xe^x# from that?

2 Answers
Feb 21, 2018

#e^2+1# or #8.389#

Explanation:

You can't find the integral of a function with its derivative.

We can do this by, differentiating #xe^x#. Say the derivative is #f(x)#. We can only find the integral of #xe^x#, using #f(x)#, by saying:

#int(intf(x)dx)dx#

But that just reduces to:

#intxe^xdx#.

Let's solve for that, then.

Applying integration by parts, that is:

#intuvdx#, where #u# and #v# are functions, is:

#uintvdx-intu'(intvdx)dx#

Here, #u=x# and #v=e^x#. Inputting:

#x inte^xdx-intx'(inte^xdx)dx#

#x*e^x-inte^xdx#

#e^(x)x-e^x+C#

Now we solve the definite integral.

Since we have #int_0^2xe^xdx#, we input:

#(e^2*2-e^2+C)-(e^0*0-e^0+C)#

#(e^2(2-1)+C)-(0-1+C)#

#e^2+C+1-C#

#e^2+1#, which is equal to:

#8.389#

Feb 21, 2018

# int_0^2 \ xe^x \ dx = e^2+1 #

Explanation:

Let us start, as indicated, by differentiating the function #xe^x# using the product rule:

# d/dx xe^x = x(d/dxe^x) +(d/dx x)e^x #
# \ \ \ \ \ \ \ \ \ \ \ = xe^x +e^x #

And so we we can write:

# xe^x = d/dx(xe^x)-e^x #

If we now integrate wrt #x# we can deduce:

# int \ xe^x \ dx = int \ d/dx(xe^x) \ dx - int \ e^x \ dx#
# \ \ \ \ \ \ \ \ \ \ \ \ \ = xe^x -e^x + C #

So we can readily evaluate the definite integral:

# int_0^2 \ xe^x \ dx = [xe^x -e^x]_0^2 #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (2e^2-e^2) - (0-e^0) #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2e^2-e^2+1 #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = e^2+1 #