Question #bce48

1 Answer
Feb 22, 2018

Parallel line, #y = -x -1# or #x + y = -1#
Perpendicular line, #y =x + 5#

Explanation:

Let say #m_1# is a gradient for line #x + y = 7#

#y = -x + 7# #-> m_1 = -1#

since it is a parallel line, they have the same gradient value.
#(y - 2) = m_1(x - (-3))#
#y - 2 = -1(x + 3)#
#y = -x -3 + 2#
#y = -x -1# or # x + y = -1#

Assuming #m_2# is a gradient for the perpendicular line thru point #(-3, 2)#, therefore

#m_1 * m_2 = -1#
#-1 * m_2 = -1# #->m_2 = 1#

for perpendicular line,
#(y - 2) = m_2(x - (-3))#
#y - 2 = 1(x + 3)#
#y = x + 3 + 2#
#y =x + 5#