How do I solve for 0 ≤ x < 2π using the equation cot² x - csc x =1 ??

1 Answer
Feb 22, 2018

#x = pi/4, 3/4 pi and 3/2 pi#

Explanation:

#cot^2 x - csc x =1#

#cos^2 x /sin^2 x - 1/sin x =1#

#cos^2 x /sin^2 x - sin x/sin^2 x =1#

#(cos^2 x- sin x)/sin^2 x =1#

#cos^2 x- sin x=sin^2 x#

change #cos^2 x to 1 -sin^2 x#
#1 -sin^2 x -sin x = sin ^2 x#

rearrange the equation
#0 = 2 sin^2 x + sin x -1#

factorize the equation
#0 = (2 sin x -1)(sin x + 1)#

therefore,
#2 sin x -1 =0 and sin x + 1 =0#
#sin x = 1/2 and sin x = -1

#x = pi/4, 3/4 pi# and #x =3/2 pi#