#6r^2+r-12=0#?

3 Answers
Feb 23, 2018

#r=4/3,-3/2#

Explanation:

We got: #6r^2+r-12=0#

Using the quadratic formula, the roots of a quadratic equation #(ax^2+bx+c=0)# are given by:

#x=(-b+-sqrt(b^2-4ac))/(2a)#

So here, we got #a=6,b=1,c=-12#, and so

#r=(-1+-sqrt(1-4xx6xx(-12)))/12#

#r=(-1+-sqrt(1+288))/12#

#r=(-1+-sqrt(289))/12#

#r=(-1+-17)/12#

#r=cancel16^4/cancel12^3,cancel(-18)^-3/cancel12^2#

#r=4/3,-3/2#

So, the roots of the equation #6r^2+r-12=0# are: #r=4/3# and #r=-3/2#.

Feb 23, 2018

#r = 4/3 , -3/2#

Explanation:

#6r^2 + r - 12 =0#

Use the splitting the middle term method.

#6r^2 + 9r -8r-12 =0#

#3r(2r +3) -4(2r+3) = 0#

#(3r-4)(2r+3) =0#

So , #3r -4=0#

#3r =4#

#r=4/3#

Or

#2r+3 =0#

#2r =-3#

#r=-3/2#

Feb 23, 2018

See a solution process below: #r = -3/2# and #r = 4/3#

Explanation:

If you are trying to solve for #r# you can use the quadratic equation to solve this problem:

The quadratic formula states:

For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#

Substituting:

#color(red)(6)# for #color(red)(a)#

#color(blue)(1)# for #color(blue)(b)#

#color(green)(-12)# for #color(green)(c)# gives:

#r = (-color(blue)(1) +- sqrt(color(blue)(1)^2 - (4 * color(red)(6) * color(green)(-12))))/(2 * color(red)(6))#

#r = (-1 +- sqrt(1 - (-288)))/12#

#r = (-1 +- sqrt(1 + 288))/12#

#r = (-1 +- sqrt(289))/12#

#r = (-1 - 17)/12# and #r = (-1 + 17)/12#

#r = -18/12# and #r = 16/12#

#r = -3/2# and #r = 4/3#