How do you solve the inequality: #((8-x)^3(8x+1))/(x^3 - 1) > 0#?

1 Answer
Feb 23, 2018

The solution is #x in (-oo,-1/8) uu(1,8)#

Explanation:

#"Reminder"#

#x^3-1=(x-1)(x^2+x+1)#

Therefore,

#((8-x)^3(8x+1))/(x^3-1)=((8-x)^3(8x+1))/((x-1)(x^2+x+1))#

The sign of #(x^2+x+1) >0# as the discriminant is #Delta<0#

Let #f(x)=((8-x)^3(8x+1))/((x-1)(x^2+x+1))#

#"Let's build the sign chart"#

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##-1/8##color(white)(aaaaaaa)##1##color(white)(aaaaaaa)##8##color(white)(aaaa)##+oo#

#color(white)(aaaa)##8x+1##color(white)(aaaa)##-##color(white)(aaaa)##0##color(white)(aaa)##+##color(white)(aaaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x-1##color(white)(aaaaa)##-##color(white)(aaaa)####color(white)(aaaa)##-##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##(8-x)^3##color(white)(aaa)##+##color(white)(aaaa)####color(white)(aaaa)##+##color(white)(aaaaa)##+##color(white)(aa)##0##color(white)(a)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaaa)##0##color(white)(aaa)##-##color(white)(aa)##||##color(white)(aa)##+##color(white)(aa)##0##color(white)(a)##-#

Therefore,

#f(x)>0# when #x in (-oo,-1/8) uu(1,8)#

graph{(8-x)^3(8x+1)/(x^3-1) [-46.23, 46.24, -23.1, 23.15]}