If #sinA+sinB=x# and #cosA+cosB=y# then show that #tan((A-B)/2)=+-sqrt((4-x^2-y^2)/(x^2+y^2))#?

2 Answers
Feb 23, 2018

See the answer below...

Explanation:

  • #sinA+sinB=x#
    #=>2 cdot sin((A+B)/2)cdot cos((A-B)/2)=x" "...(1)#

  • #cosA+cosB=y#
    #=>2cdot cos((A+B)/2) cdot cos((A-B)/2)=y" "...(2)#

    Now, we have to remove the term of sine and cosine value of #" "((A+B)/2)" "#to get the value of #tan((A-B)/2)#.

From 1st equation,

#=>4 cdot sin^2((A+B)/2)cdot cos^2((A-B)/2)=x^2#
#=>4 cdot cos^2((A-B)/2)cdot {1-cos^2((A+B)/2)}=x^2" "...(3)#

Similarly, from 2nd equation,

#=>4 cdot cos^2((A+B)/2) cdot cos^2((A-B)/2)=y^2#
#=>4 cdot cos^2((A+B)/2) cdot cos^2((A-B)/2)=y^2" "...(4)#

From 3rd and 4th equation, we get

#=>4 cdot cos^2((A-B)/2)cdot {1-y^2/(4 cdot cos^2((A-B)/2)}}=x^2#

#=>4 cdot cos^2((A-B)/2)-y^2 =x^2#

#=>4 cdot cos^2((A-B)/2) =x^2+y^2#

#=>cos^2((A-B)/2)=(x^2+y^2)/4#

#=>sec^2((A-B)/2)=4/(x^2+y^2)#

#=>1+tan^2((A-B)/2)=4/(x^2+y^2)#

#=>tan^2((A-B)/2)=4/(x^2+y^2)-1#

#=>tan^2((A-B)/2)=(4-x^2-y^2)/(x^2+y^2)#

#=>tan((A-B)/2)=+-sqrt((4-x^2-y^2)/(x^2+y^2)#

Hope it helps..
Thank you...

Feb 23, 2018

Proof is done considering squaring both the sides, and verified

Explanation:

Given:
#sinA+sinB=x#
#cosA+cosB=y#

To show that:

#tan((A-B)/2)=+-sqrt((4-x^2-y^2)/(x^2+y^2))#

Squaring both sides,

#tan^2((A-B)/2)=(4-x^2-y^2)/(x^2+y^2)#

RHS

#=(4-(sinA+sinB)^2-(cosA+cosB)^2)/((sinA+sinB)^2+(cosA+cosB)^2)#

#=(4-(sin^2A+2sinAsinB+sin^2B)-(cos^2A+2cosAcosB+cos^2B))/(sin^2A+2sinAsinB+sin^2B+cos^2A+2cosAcosB+cos^2B#

#=(4-(sin^2A+cos^2A+sin^2B+cos^2B+2(cosAcosB+sinAsinB)))/(sin^2A+cos^2A+sin^2B+cos^2B+2(cosAcosB+sinAsinB))#

#sin^2A+cos^2A=1#
#sin^2B+cos^2B=1#
#cosAcosB+sinAsinB=cos(A-B)#

#=(4-(1+1+2cos(A-B)))/(1+1+2cos(A-B))#

#=(4-1-1-2cos(A-B))/(1+1+2cos(A-B)#

#(2-2cos(A-B))/(2+2cos(A-B))#

#(2(1-cos(A-B)))/(2(1+cos(A-B)))#

#=(1-cos(A-B))/(1+cos(A-B))#

#=(2sin^2((A-B)/2))/(2cos^2((A-B)/2))#

#=(sin^2((A-B)/2))/(cos^2((A-B)/2))#

#=tan^2((A-B)/2)#

=LHS

Hence, proved