How do you find the values of all six trigonometric functions of a right triangle ABC where C is the right angle, given a=20, b=21, c=29?

2 Answers
Feb 23, 2018

#cosB=a/c=21/29#

#sinB=b/c=20/29#

#tanB=b/a=20/21#

#cotB=a/b=21/20#

#secB=c/a=29/21#

#cscB=c/b=29/20#

Explanation:

Verification:

#20^2=400#
#21^2=441#
#20^2+21^2=400+441#
#20^2+21^2=841#
#29^2=841#
It is confirmed that the triangle is a right angled triangle
#a=20#
#b=21#
#c=29#
#C=90^@#
Thus with c=29 being considered as hypotenuse
Consider a=21 to form the adjacent side
, and b=20 to form the opposite side
the angle under consideration is B

Now,

#cosB=a/c=21/29#

#sinB=b/c=20/29#

#tanB=b/a=20/21#

#cotB=a/b=21/20#

#secB=c/a=29/21#

#cscB=c/b=29/20#

Feb 23, 2018

all trignometric functions of right triangle, AC= hypotenuse=c
BC=a and AC= b are adjacent or opposite sides in accordance to the acute angles, either A or B

Explanation:

if we take angle A as the acute angle,
#sinA= a/c=20/29=(opp)/(hyp)#
#cosA=b/c=21/29=(adj)/(hyp)#
#secA=c/b=29/21=(hyp)/(adj)#
#cosecA=c/a=29/20=(hyp)/(opp)#
#tanA=a/b=20/21=(opp)/(adj)#
#cotA= b/a=21/20=(adj)/(opp)#
enter image source here
if we take angle B as the acute angle,
#sinB= b/c=21/29=(opp)/(hyp)#
#cosB=a/c=20/29=(adj)/(hyp)#
#secB=c/a=29/20=(hyp)/(adj)#
#cosecB=c/b=29/21=(hyp)/(opp)#
#tanB=b/a=21/20=(opp)/(adj)#
#cotB= a/b=20/21=(adj)/(opp)#