Use the a) and b) to prove #hatT_L = e^(LhatD)# #(a)[hatT_L,hatD]=0# #(b)[hatx,hatT_L]=-LhatT_L# ?
Use these to prove
#[hatD,hatx]=hat1#
To show #[hatT_L,hatD]=0#
#f'(x-L)-f'(x-L) =0#
working for the first part is on https://socratic.org/questions/if-hatt-l-is-the-translation-operator-hatt-lf-x-f-x-l-and-hatx-is-hatxf-x-xf-x-t?commentevent_id=
Use these to prove
To show
working for the first part is on https://socratic.org/questions/if-hatt-l-is-the-translation-operator-hatt-lf-x-f-x-l-and-hatx-is-hatxf-x-xf-x-t?commentevent_id=
1 Answer
From whatever you're saying up there, all it looks like we're supposed to do is to show that
We will end up proving that using
#hatT_L -= e^(LhatD) = e^(ihatp_xL//ℏ)#
gives
#[hatD, hatx] -= [ihatp_x//ℏ, hatx] = 1#
and not
From part 1, we had shown that for this definition (that
#[hatx, hatT_L] = -LhatT_L# .
Since
Recall that in the proof shown in part 1, we had written:
#hatx(hatT_L f(x_0)) = ([hatx,hatT_L] + hatT_Lhatx)f(x_0)#
#= -LhatT_Lf(x_0) + hatT_Lhatxf(x_0)#
and that is where we would have to use it. All we have to do is Taylor expand the exponential operator and show that the above proof still holds.
This is also shown in light detail here. I expanded it to be more thorough...
#e^(LhatD) = sum_(n=0)^(oo) (LhatD)^(n)/(n!) = sum_(n=0)^(oo) 1/(n!) L^n (hatD)^n#
Give that
#[hatx, e^(LhatD)] = sum_(n=0)^(oo) {1/(n!)(L^n) [hatx, hatD^n]}#
Now, we proposed that
#[hatx, hatp_x]f(x) = -iℏx(df)/(dx) + iℏd/(dx)(xf(x))#
#= cancel(-iℏx(df)/(dx) + iℏx(df)/(dx)) + iℏf(x)#
so that
#color(blue)([hatD", " hatx]) = [(ihatp_x)/(ℏ),hatx]#
#= -[(hatp_x)/(iℏ),hatx] = -1/(iℏ)[hatp_x,hatx]#
#= -1/(iℏ) cdot -[hatx, hatp_x]#
#= -1/(iℏ) cdot-iℏ = color(blue)(1)#
From this, we further expand the commutator:
#[hatx, e^(ihatp_xL//ℏ)] = sum_(n=0)^(oo) {1/(n!)(L^n) [hatx, ((ihatp_x)/(ℏ))^n]}#
#= sum_(n=0)^(oo) {1/(n!)((iL)/(ℏ))^n [hatx, hatp_x^n]}#
Now, we know
#d^n/(dx^n)(xf(x)) = x(d^nf)/(dx^n) + n(d^(n-1)f)/(dx^(n-1))#
and that
#hatp_x^n = hatp_xhatp_xhatp_xcdots#
#= [(-iℏ)d/(dx)]^n = (-iℏ)^n (d^n)/(dx^n)#
so that:
#[hatx, hatp_x^n] = hatxhatp_x^n - hatp_x^nhatx#
#= x cdot (-iℏ)^n (d^n f)/(dx^n) - [(-iℏ)^n d^n/(dx^n)(xf(x))]#
#= (-iℏ)^nx(d^nf)/(dx^n) - [(-iℏ)^n(x(d^nf)/(dx^n) + n (d^(n-1)f)/(dx^(n-1)))]#
#= (-iℏ)^n{cancel(x(d^nf)/(dx^n)) - cancel(x(d^nf)/(dx^n)) - n(d^(n-1)f)/(dx^(n-1))}#
#= (-iℏ)^(n-1)(-iℏ)(-n (d^(n-1)f)/(dx^(n-1)))#
#= iℏn (-iℏ)^(n-1)(d^(n-1))/(dx^(n-1))[f(x)]#
We recognize that
#[hatx, hatp_x^n] = iℏnhatp_x^(n-1)# , provided#n >= 1# .
From this, we find:
#[hatx", " e^(ihatp_xL//ℏ)] = sum_(n=0)^(oo) {1/(n!)(L^n) [hatx, ((ihatp_x)/(ℏ))^n]}#
#= sum_(n=1)^(oo) {1/(n!)((iL)/(ℏ))^n iℏnhatp_x^(n-1)}#
where if you evaluate the
#= iℏ sum_(n=1)^(oo) [n/(n!) ((iL)/(ℏ))^n hatp_x^(n-1)]#
#= iℏ sum_(n=1)^(oo) [1/((n-1)!) ((iL)/ℏ)^(n-1)((iL)/ℏ)hatp_x^(n-1)]#
Here we are simply trying to make this look like the exponential function again.
#= iℏ ((iL)/ℏ) sum_(n=1)^(oo) [((ihatp_xL)/ℏ)^(n-1)/((n-1)!)]#
(group terms)
#= -L sum_(n=1)^(oo) [((ihatp_xL)/ℏ)^(n-1)/((n-1)!)]#
(evaluate the outside)
#= -L overbrace(sum_(n=0)^(oo) [((ihatp_xL)/ℏ)^(n)/(n!)])^(e^(ihatp_xL//ℏ))#
(if#n# starts at zero, the#(n-1)# th term becomes the#n# th term.)
As a result, we finally get:
#=> color(blue)([hatx", " e^(ihatp_xL//ℏ)]) = -Le^(ihatp_xL//ℏ)#
#-= -Le^(LhatD)#
#-= color(blue)(-LhatT_L)#
And we again get back to the original commutator, i.e. that
#[hatx, hatT_L] = -LhatT_L color(blue)(sqrt"")#
Lastly, let's show that
#[hatT_L, hatD] = [e^(LhatD), hatD]#
#= [sum_(n=0)^(oo) ((LhatD)^n)/(n!), hatD]#
#= (sum_(n=0)^(oo) ((LhatD)^n)/(n!))hatD - hatD(sum_(n=0)^(oo) ((LhatD)^n)/(n!))#
Writing this out explicitly, we can then see it work:
#= color(blue)([hatT_L", " hatD]) = [((LhatD)^0)/(0!)hatD + ((LhatD)^1)/(1!)hatD + . . . ] - [hatD((LhatD)^0)/(0!) + hatD((LhatD)^1)/(1!) + . . . ]#
#= ((LhatD)^0)/(0!)hatD - hatD((LhatD)^0)/(0!) + ((LhatD)^1)/(1!)hatD - hatD((LhatD)^1)/(1!) + . . . #
#= [((LhatD)^0)/(0!), hatD] + [(LhatD)^(1)/(1!), hatD] + . . . #
#= L^0/(0!)[(hatD)^0, hatD] +L^1/(1!) [(hatD)^(1), hatD] + . . . #
#= color(blue)(sum_(n=0)^(oo) L^n/(n!)[(hatD)^n", " hatD])#
and since
#[hatT_L, hatD] = 0# #color(blue)(sqrt"")#