5/3-2/x=8/x?

if x was not equal to 0

3 Answers
Feb 26, 2018

#x=6#

Explanation:

#5/3-2/x=8/x|color(blue)(*x)#
#5/3color(blue)(*x)-2/cancel(x)cancel(color(blue)(*x))=8/cancel(x)cancel(color(blue)(*x))#
#5/3x-2=8|color(blue)(+2)#
#5/3xcancel(-2color(blue)(+2))=8color(blue)(+2)#
#5/3x=10|color(blue)(*3/5)#
#cancel(5/3color(blue)(*3/5))*x=2cancel(10)color(blue)(*3/cancel(5))#
#x=6#

Feb 26, 2018

#x=6#

Explanation:

First, ensure that all terms with #x# in the denominator are on the same side. This entails adding #2/x# to each side:

#5/3cancel(-2/x+2/x)=8/x+2/x#

Since the terms on the right have a common denominator, we can add:

#5/3=(8+2)/x#

#5/3=10/x#

Multiply each term by the term diagonal to it:

#5x=10(3)#

#5x=30#

Divide each side by #5:#

#(cancel5x)/cancel5=30/5#

#x=6#

Feb 26, 2018

#5/3-2/x=8/x#

#5/3cancel(-2/x)cancel(+2/x)=8/x+2/x#

#5/3=10/x#

#5/3*x=10/cancelx*cancelx##->##5/3x=10#

#cancel(5/3)x*cancel(3/5)=10*3/5#

#x=6#

Hope that helped!
~Chandler Dowd