Given:
#f(x)=x/sqrt(64-x^2)+(64-x^2)^(3/2)#
To find the equation of the tangent at #" x=4"#
Let #" "y=f(x)#
Now,#" "y=x/sqrt(64-x^2)+(64-x^2)^(3/2)#
Substituting for x=4,
#y=4/sqrt(64-4^2)+(64-4^2)^(3/2)#
#y=4/sqrt(64-16)+(64-16)^(3/2)#
#y=4/sqrt48+48^(3/2)#
The point through which the tangent passes is given by
#P-=(x,y)=P-=(4,333.1311)#
Differentiating wrt x
#dy/dx=((sqrt(64-x^2)-x/(2(sqrt(64-x^2)))(-2x))/(sqrt(64-x^2))^2)#
#+3/2(64-x^2)^(1/2)(-2x)#
#dy/dx=(64-x^2+x^2)/(64-x^2)^(3/2)#
#dy/dx=64/(64-x^2)^(3/2)#
Substituting x=4
#dy/dx=64/(64-4^2)^(3/2)#
#dy/dx=64/48^(3/2)#
#dy/dx=0.19245#
Slope of the tangent passing through the point #" "P-=(4,333.1311)# is 0.19245
Thus, the point slope form of the equation happens to be
#(y-333.1311)/(x-4)=0.19245#
Simplifying
#y-333.1311=0.19245(x-4)#
#y-333.1311=0.19245x-0.7698#
#y=0.19245x+332.3613#
or
#0.19245x-y+332.3613=0#