#sqrt((48x^4))#?

#sqrt((48x^4))#

2 Answers
Feb 28, 2018

#4x^2\sqrt{3}#

# #

Explanation:

#\sqrt{48x^4}#

Apply the product of radical rule #\root[n]{ab}=\root[n]{a}\cdot \root[n]{b}#

#=\sqrt{48}\sqrt{x^4}#

#=\sqrt{2\cdot 2\cdot 2\cdot 2\cdot 3}\sqrt{x^4}#

#=\sqrt{2^4\cdot 3}\sqrt{x^4}#

#=\sqrt{2^4}\sqrt{x^4}\sqrt{3}#

# #

By using the radical rule #\root[n]{a^m}=a^{\frac{m}{n}}#, we get:

#\sqrt{2^4}=2^{\frac{4}{2}}=2^2=4#
#\sqrt{x^4}=x^{\frac{4}{2}}=x^2#

# #

So that get:

#=4x^2\sqrt{3}#

# #

That's it!

Feb 28, 2018

#4x^2sqrt3#

Explanation:

First, let's break up the radical into two expressions so it'll be easier to deal with. We get:

#color(blue)sqrt(48)*sqrt(x^4)#

We can factor a perfect square out of #sqrt48#. We can factor out a #16# and #3#. We would get:

#color(blue)sqrt16*color(blue)sqrt3*sqrt(x^4)# (Blue terms are equal to #sqrt48#)

#sqrt16# simplifies to #4#, we cannot factor #sqrt3# any further, and #sqrt(x^4)# would simply be #x^2#. We have:

#4sqrt3*x^2#

We can rewrite this with #x^2# being in front of the radical, and we get:

#4x^2sqrt3#

NOTE: When typing radicals, numbers, exponents and variables, etc., you have to put a hashtag (###) on both ends.