Write the complex number #(-5 - 3i)/(4i)# in standard form?
2 Answers
Mar 4, 2018
Explanation:
We want the complex number in the form
We can however solve this using a little trick. If we multiply both top and bottom by
Mar 4, 2018
Explanation:
#color(orange)"Reminder"color(white)(x)i^2=(sqrt(-1))^2=-1#
#"multiply numerator/denominator by "4i#
#rArr(-5-3i)/(4i)xx(4i)/(4i)#
#=(-20i-12i^2)/(16i^2)#
#=(12-20i)/(-16)#
#=12/(-16)-(20i)/(-16)#
#=-3/4+5/4ilarrcolor(red)"in standard form"#