How do you solve #\frac { 15} { n } = \frac { 24} { 128}#?

1 Answer
Mar 4, 2018

See a solution process below:

Explanation:

Because both sides of the equation are pure fractions we can "flip" the fractions without affecting the result:

#n/15 = 128/24#

#n/15 = (8 * 16)/(8 * 3)#

#n/15 = (color(red)(cancel(color(black)(8))) * 16)/(color(red)(cancel(color(black)(8))) * 3)#

#n/15 = 16/3#

Now, multiply each side of the equation by #color(red)(15)# to solve for #n# while keeping the equation balanced:

#color(red)(15) xx n/15 = color(red)(15) xx 16/3#

#cancel(color(red)(15)) xx n/color(red)(cancel(color(black)(15))) = cancel(color(red)(15))color(red)(5) xx 16/color(red)(cancel(color(black)(3)))#

#n = 5 xx 16#

#n = 80#