How do you solve #\frac { 5} { 14} n - 8= 2#?

1 Answer
Mar 5, 2018

See a solution process below:

Explanation:

First, add #color(red)(8)# to each side of the equation to isolate the #n# term while keeping the equation balanced:

#5/14n - 8 + color(red)(8) = 2 + color(red)(8)#

#5/14n - 0 = 10#

#5/14n = 10#

Now, multiply each side of the equation by #color(red)(14)/color(blue)(5)# to solve for #n# while keeping the equation balanced:

#color(red)(14)/color(blue)(5) xx 5/14n = color(red)(14)/color(blue)(5) xx 10#

#cancel(color(red)(14))/cancel(color(blue)(5)) xx color(blue)(cancel(color(black)(5)))/color(red)(cancel(color(black)(14)))n = color(red)(14)/cancel(color(blue)(5)) xx color(blue)(cancel(color(black)(10)))2#

#n = color(red)(14) xx 2#

#n = 28#