Rationalise Denominator: 1/(1 + √2 + √3) by using: (1 - √2 + √3) as conjugate?
2 Answers
Explained below :-
Explanation:
#1/(1+sqrt(2)+sqrt(3))=(2+sqrt(2)-sqrt(6))/4#
Explanation:
The difference of squares identity can be written:
#A^2-B^2=(A-B)(A+B)#
This is the key to eliminating square roots from the denominator.
Note that
If we want to rationalise the denominator, we will also need to multiply by some expression of the form
#1/(1+sqrt(2)+sqrt(3))#
#=((1+sqrt(3))-sqrt(2))/(((1+sqrt(3))-sqrt(2))((1+sqrt(3))+sqrt(2)))#
#=(1+sqrt(3)-sqrt(2))/((1+sqrt(3))^2-(sqrt(2))^2)#
#=(1+sqrt(3)-sqrt(2))/(1+2sqrt(3)+3-2)#
#=(1+sqrt(3)-sqrt(2))/(2(sqrt(3)+1))#
#=((sqrt(3)-1)(1+sqrt(3)-sqrt(2)))/(2(sqrt(3)-1)(sqrt(3)+1))#
#=((sqrt(3)+3-sqrt(6))-(1+sqrt(3)-sqrt(2)))/(2(3-1))#
#=(2+sqrt(2)-sqrt(6))/4#
Note that having got to this result, the numerator is a proper conjugate for
#(1+sqrt(2)+sqrt(3))(2+sqrt(2)-sqrt(6)) = 4#