What is the arc length of the curve given by #r(t)= (ln(1/t),t^2,t)# on # t in [1, 10]#?

1 Answer
Mar 8, 2018

The arc length is #99+ln10-3/4(ln10+sum_(m=1)^oo((-1),(m))(1/2)^m(1/(2m))(1-1/100^m))+sum_(n=2)^oosum_(m=0)^oo((1/2),(n))((1-2n),(m))(-3/4)^n(1/2)^m(1/(n+m))(1-1/100^(n+m))# units.

Explanation:

#r(t)=(ln(1/t),t^2,t)=(-lnt,t^2,t)#

#r'(t)=(-1/t,2t,1)#

Arc length is given by:

#L=int_1^10sqrt(1/t^2+4t^2+1)dt#

Complete the square in the square root:

#L=int_1^10sqrt((2t+1/t)^2-3)dt#

Factor out the larger piece:

#L=int_1^10(2t+1/t)sqrt(1-3/(2t+1/t)^2)dt#

For #t in [1,10]#, #3/(2t+1/t)^2<1#. Take the series expansion of the square root:

#L=int_1^10(2t+1/t){sum_(n=0)^oo((1/2),(n))(-3/(2t+1/t)^2)^n}dt#

Isolate the #n=0# term and simplify:

#L=int_1^10(2t+1/t)dt+sum_(n=1)^oo((1/2),(n))(-3)^nint_1^10(2t+1/t)^(1-2n)dt#

Rearrange:

#L=[t^2+lnt]_ 1^10+2sum_(n=1)^oo((1/2),(n))(-3/4)^nint_1^10t^(1-2n)(1+1/(2t^2))^(1-2n)dt#

Take a second series expansion:

#L=99+ln10+2sum_(n=1)^oo((1/2),(n))(-3/4)^nint_1^10t^(1-2n){sum_(m=0)^oo((1-2n),(m))(1/(2t^2))^m}dt#

Simplify:

#L=99+ln10+2sum_(n=1)^oosum_(m=0)^oo((1/2),(n))((1-2n),(m))(-3/4)^n(1/2)^m int_1^10t^(1-2n-2m)dt#

Isolate the #n=1# case:

#L=99+ln10-3/4sum_(m=0)^oo((-1),(m))(1/2)^m int_1^10t^(-1-2m)dt+2sum_(n=2)^oosum_(m=0)^oo((1/2),(n))((1-2n),(m))(-3/4)^n(1/2)^m int_1^10t^(1-2n-2m)dt#

Isolate the #n=1,m=0# case:

#L=99+ln10-3/4(int_1^10 1/tdt+sum_(m=1)^oo((-1),(m))(1/2)^m int_1^10t^(-1-2m)dt)+2sum_(n=2)^oosum_(m=0)^oo((1/2),(n))((1-2n),(m))(-3/4)^n(1/2)^m int_1^10t^(1-2n-2m)dt#

The remaining integrals are trivial:

#L=99+ln10-3/4([lnt]_ 1^10+sum_(m=1)^oo((-1),(m))(1/2)^m [t^(-2m)]_ 1^10/(-2m))+2sum_(n=2)^oosum_(m=0)^oo((1/2),(n))((1-2n),(m))(-3/4)^n(1/2)^m[t^(-2n-2m)]_1^10/(-2n-2m)#

Insert the limits of integration and simplify:

#L=99+ln10-3/4(ln10+sum_(m=1)^oo((-1),(m))(1/2)^m(1/(2m))(1-1/100^m))+sum_(n=2)^oosum_(m=0)^oo((1/2),(n))((1-2n),(m))(-3/4)^n(1/2)^m(1/(n+m))(1-1/100^(n+m))#