What is the integral of #(ln(xe^x))/x#?

2 Answers
Mar 11, 2018

#\int# #ln(xe^x)/(x)dx = ln^2(x)/2+x+C#

Explanation:

We are given:

#\int# #ln(xe^x)/(x)dx#

Using #ln(ab) = ln(a) + ln(b)#:

#=\int# #(ln(x) + ln(e^x))/(x)dx#

Using #ln(a^b) = bln(a)#:

#=\int# #(ln(x) + xln(e))/(x)dx#

Using #ln(e) = 1#:

#=\int# #(ln(x) + x)/(x)dx#

Splitting the fraction (#x/x = 1#):

#=\int# #(ln(x)/x + 1)dx#

Separating the summed integrals:

#=\int# #ln(x)/xdx + \int dx#

The second integral is simply #x + C#, where #C# is an arbitrary constant. The first integral, we use #u#-substitution:

Let #u \equiv ln(x)#, hence #du = 1/x dx#

Using #u#-substitution:

#=\int udu + x + C#

Integrating (the arbitrary constant #C# can absorb the arbitrary constant of the first indefinite integral:

#=u^2/2 + x + C#

Substituting back in terms of #x#:

# = ln^2(x)/2+x+C#

Mar 11, 2018

#int\ ln(xe^x)/x\ dx=ln^2(x)/2+x+C#

Explanation:

We begin by using the following logarithm identity:

#ln(ab)=ln(a)+ln(b)#

Applying this to the integral, we get:

#int\ (ln(xe^x))/x\ dx=int\ ln(x)/x+ln(e^x)/x\ dx=#

#=int\ ln(x)/x+x/x\ dx=int\ ln(x)/x+1\ dx=int\ ln(x)/x\ dx+x#

To evaluate the remaining integral, we use integration by parts:

#int\ f(x)g'(x)\ dx=f(x)g(x)-int\ f'(x)g(x)\ dx#

I will let #f(x)=ln(x)# and #g'(x)=1/x#. We can then compute that:

#f'(x)=1/x# and #g(x)=ln(x)#

We can then apply the integration by parts formula to get:

#int\ ln(x)/x\ dx=ln(x)*ln(x)-int\ ln(x)/x\ dx#

Since we have the integral on both sides of the equals sign, we can solve it like an equation:

#2int\ ln(x)/x\ dx=ln^2(x)#

#int\ ln(x)/x\ dx=ln^2(x)/2+C#

Plugging back into the original expression, we get our final answer:

#int\ ln(xe^x)/x\ dx=ln^2(x)/2+x+C#