How do you integrate?

enter image source here

1 Answer
Mar 11, 2018

Use the substitution #x+3=3sectheta#.

Explanation:

Let

#I=int(x-3)/sqrt(x^2+6x)dx#

Complete the square in the square root:

#I=int(x-3)/sqrt((x+3)^2-9)dx#

Apply the substitution #x+3=3sectheta#:

#I=int(3sectheta-6)/(3tantheta)(3secthetatanthetad theta)#

Simplify:

#I=3int(sec^2theta-2sectheta)d theta#

Integrate directly:

#I=3(tantheta-2ln|sectheta+tantheta|)+C#

Rearrange:

#I=3tantheta-6ln|3sectheta+3tantheta|+C#

Reverse the substitution:

#I=sqrt(x^2+6x)-6ln|x+3+sqrt(x^2+6x)|+C#