How do you simplify # (4/9) * (49/6) * (27/28)#?

1 Answer
Mar 11, 2018

See a solution process below:

Explanation:

First, rewrite the expression as:

#(4 * 49 * 27)/(9 * 6 * 28) =>#

#(4 * 7 * 7 * 3 * 9)/(9 * 3 * 2 * 4 * 7)#

Next, cancel common terms in the numerator and denominator:

#(color(red)(cancel(color(black)(4))) * color(blue)(cancel(color(black)(7))) * 7 * color(green)(cancel(color(black)(3))) * color(purple)(cancel(color(black)(9))))/(color(purple)(cancel(color(black)(9))) * color(green)(cancel(color(black)(3))) * 2 * color(red)(cancel(color(black)(4))) * color(blue)(cancel(color(black)(7)))) => 7/2#