#x^2# plus #1/(9x^2)# is equal to #25/36#. Find the value of #x^3# plus #1/(27x^3)#?

2 Answers
Dec 20, 2017

# +-91/216#.

Explanation:

Given that, #x^2+1/(9x^2)=25/36#.

#:. (9x^4+1)/(9x^2)=25/36#.

Cancelling #9# from the #drs.# of both sides, we get,

#(9x^4+1)/x^2=25/4, or, 36x^4+4=25x^2#.

#:. 36x^4-25x^2+4=0#.

#:. ul(36x^4-16x^2)-ul(9x^2+4)=0#.

#:.4x^2(9x^2-4)-1(9x^2-4)=0#.

#:. (9x^2-4)(4x^2-1)=0#.

#:. x^2=4/9, or, x^2=1/4#.

#:. x=+-2/3, or, x=+-1/2#.

Case 1: #x=+-2/3#.

#x=+-2/3 rArr 1/x=+-3/2#.

#:."The Reqd. Value="x^3+1/(27x^3)=+-8/27+1/27(+-27/8)#,

#=+-8/27+-1/8=+-91/216#.

Case 2: #x=+-1/2#.

#"In this Case, the Reqd. Value="+-1/8+1/27(+-8)=+-91/216#.

Altogether, the Reqd. Value#=+-91/216#.

Mar 12, 2018

#x^3+1/(27x^3) = +-91/216#

Explanation:

Here's an alternative method that does not require calculating #x#:

Note that:

#(x+1/(3x))^2 = x^2+2/3+1/(9x^2) = 25/36+2/3 =49/36 = (7/6)^2#

So:

#(x+1/(3x)) = +-7/6#

Then:

#+-343/216 = (x+1/(3x))^3#

#color(white)(+-343/216) = x^3+x+1/(3x)+1/(27x^3)#

#color(white)(+-343/216) = x^3+1/(27x^3)+-7/6#

So:

#x^3+1/(27x^3) = +-(343/216-7/6) = +-(343/216-252/216) = +-91/216#