How do you differentiate #Y = (cos x)^2 - cos x#?

1 Answer
Mar 13, 2018

#dy/dx=sinx-sin2x#

Explanation:

#"differentiate "(cosx)^2" using the "color(blue)"chain rule"#

#"Given "y=f(g(x))" then"#

#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#

#rArrd/dx((cosx)^2)=2cosx xxd/dx(cosx)#

#color(white)(xxxxxxxxxxxx)=-2sinxcosx=-sin2x#

#y=(cosx)^2-cosx#

#rArrdy/dx=-sin2x-(-sinx)#

#color(white)(rArrdy/dx)=sinx-sin2x#