Can you help me ?

enter image source here

2 Answers
Mar 14, 2018

Please see below.

Explanation:

.

Problem #4#:

This is a pyramid sitting atop a rectangular box. We can calculate the volume of each separately and add them together:

#V_("Box")=l*w*h# where #l, w, and h# are length, width, and height of the box:

#V_("Box")=(6)(5)(2)=60# #Cm^3#

#V_(Pyramid)=1/3Area_(Base)Height=1/3(6)(5)(1.5)=15# #Cm^3#

Total Volume #=60+15=75# #Cm^3#

Problem #5#:

This is a cone sitting atop a cylinder. We can calculate the volume of each separately and add them together:

#V_("Cone")=1/3Area_(Base)*Height#

#Area_(Base)=Area_("Circle")=pir^2# where #r# is the radius

#V_("Cone")=1/3pi(6)^2(9)=108pi# #m^3#

#V_("Cylinder")=Area_(Base)*Height#

#V_("Cylinder")=pi(6)^2(6)=216pi# #m^3#

Total Volume #=108pi+216pi=324pi=1,018# #m^3#

Mar 14, 2018

Q4 #= 75# # cm^3#

Q5 #= 324 pi# #m^3#

Explanation:

Q4.
we separete into two calculation.

Total Volume =Volume cuboid + volume pyramid.

#= (width * length * height)# + (1/3 * base area *height)

#=(5 * 6 * 2 ) +( 1/3 * (5 * 6 * 1.5))#

#= 60 + 15#
#= 75# # cm^3#

Q5.
we separete into two calculation.

Total Volume =Volume cylinder + volume cone.

#= pi * r^2 * h + 1/3 pi * r^2 h#

#= pi * 6^2 * 6 + 1/3 pi * 6^2 * 9#

#= 216 pi + 108 pi#

#= 324 pi# #m^3#