#1+2cot x(csc x+cotx) = 1+2 cos x/sin x (1/sin x+cos x/sin x)#
# qquad = 1+2 (cos x(1+cos x))/sin^2 x = (sin^2x+2cosx+2cos^2x)/sin^2x#
#qquad = (1+2cos x+cos^2x)/sin^2 x = ((1+cos x)/sin x)^2#
So, in the interval #x in (0,pi/2)#, we have :
#sqrt{1+2cot x(csc x+cotx)} = {1+cos x}/sin x = {2 cos^2(x/2)}/{2sin(x/2)cos(x/2)} =cot(x/2)#
Thus, the integral is
#int sqrt{1+2cot x(csc x+cotx)} dx = int cot(x/2) dx = 2 int cot(x/2) d(x/2) = 2 ln (sin(x/2))+C#