How do you solve #e^ { 4x - 5} \cdot e ^ { - x } = 4e#?

1 Answer
Mar 15, 2018

#x = 1/3 (5 + ln(4e)) ~~ 2.462#

or #x = 2 + 1/3ln4 ~~ 2.462#

Explanation:

Given: #e^(4x-5)*e^(-x) = 4e#

First you must know your rules of exponents: #x^m x^n = x^(m+n)#

Using this rule: #e^(4x-5-x) = 4e; " "e^(3x-5) = 4e#

Natural log both sides of the equation:# " " ln e^(3x-5) = ln 4e#

Since the natural logarithm function #ln x# is the inverse of #e^x#,
#ln e^x = x " (exponent")#.

This means # ln e^(3x-5) = 3x-5#

So, #" "3x - 5 = ln 4e#

Simplifying: #3x = 5+ ln 4e; " " x = 1/3(5+ ln 4e)~~ 2.462#

A second way to solve starting from #e^(3x-5) = 4e#:

Divide by #e#: #" "e^(3x-5)/e = 4#

Rewrite: #" "e^(3x-5)*e^(-1) = 4#

Combine exponents: #" "e^(3x-6) = 4#

Natural log both sides of the equation:# " " ln e^(3x-6) = ln 4#

# ln e^(3x-6) = 3x-6#

So, #" "3x-6 = ln 4#

Simplify: #" " 3(x-2) = ln 4#

#x - 2 = 1/3 ln4#

#x = 2 + 1/3 ln 4~~ 2.462#